
Sai Bhargav Avula

Computer Vision and Perception Engineer | Technology Innovation Institute

🗞 bhargavab17.github.io/ 🔘 bhargavvk18@gmail.com 🛮 in linkedin.com/in/bhargavvk18 github.com/bhargavab17

My goal is to design intelligent systems that build rich, multisensory models of the world, integrating vision and language. I am particularly interested in invertible world models that bridge real-world perception and action.

EXPERIENCE

September 2022

Computer Vision and Perception Engineer, TECHNOLOGY INNOVATION INSTITUTE, Abu Dhabi, U.A.E.

Present

- > Developing and Deploying perception algorithms for multiple R&D projects.
- > Developed the perception stack for in-house autonomous platforms like Buggys, ATVs, and FJ Cruisers.
- > Solving multiple research problems in the context of segmentation and tracking in Thermal and RGB domains.
- > Core member of the TII's Infrared Tracking Challenge([Project-Page])

Created a novel dataset.

Developed evaluation framework.

Developed state -of-the-art baseline model.

C++ Python ROS PyTorch TensorFlow Docker CUDA TensorRT MATLAB GIT

June 2022 September 2022

Senior Machine Learning Engineer, QUALCOMM, Hyderabad, India

> Worked on the SNPE framework to enable Qualcomm SOCs to infer various deep neural networks.

C++ SNPE Python PyTorch TensorFlow GIT

June 2020 April 2022

Deep Learning Software Engineer, MATHWORKS, Hyderabad, India

- > Developed Deep Learning features for Automated Driving Toolbox, Computer Vision Toolbox, Lidar toolbox and Deep Learning Toolbox.
- > Developed deep learning layers for MATLAB.
- > Provided code generation support for both CPU and GPU targets to the functions developed.
- > Developed Deep Learning workflows as MATLAB Examples.

MATLAB C++ Python PyTorch TensorFlow GIT

June 2019 June 2020

Engineer in EDG, MATHWORKS, Hyderabad, India

- > Developed domain adaptation workflows to address data scarcity and labeling problems of real-world data, majorly in the context of semantic segmentation.
- > Solved several customer workflow-related issues.

MATLAB (C++) (Python) (PyTorch) (TensorFlow) (GIT

October 2018 May 2019

Motion Planning Intern, MATHWORKS, Hyderabad, India

> Developed a Traffic simulator for testing MATLAB's Navigation and ADAS toolbox features. This project is the extension to my Master's thesis work for Multi Agent sys-

MATLAB C++ GIT

Key skills and competencies

C++, Python, MATLAB, Pytorch, Linux, GIT, Deep/Machine Learning, Computer Vision ROS (Robot Operating System), Docker, TensorFlow, Optimization, TensorRT BASH, CUDA, ROS2

EDUCATION

2016-2019	MS by research in Robotics, International Institute of Information Technology, Hydera-	GPA: 9.00/10.00
	bad, India	
2012-2016	B.Tech in Electronics Design and Manufacturing, Indian Institute of Information Tech-	GPA: 8.36/10.00
	nology, Design and Manufacturing	

JOURNAL PUBLICATIONS

Reactive Navigation under Uncertainty through Hilbert Space Embedding of Probabilistic Velocity Obs- RAL-ICRA 2020		
tacles		
Jyotish, Bharath Gopalakrishnan, Bhargav , Arun Kumar Singh, K.Madhava Krishna, Dinesh Manocha	[Project-Page]	[Video]

CONFERENCE PUBLICATIONS

Semantic Segmentation based on Multiple Granularity Learning	IROS 2023
Kebin Wu, Ameera Bawazir, Xiaofei Xiao, Sai Bhargav Avula , Ebtesam Almazrouei, Eloy Roura, Merouane Debbah	[Project-Page]
Debban	
Remote ID for separation provision and multi-agent navigation	DASC 2023
Evgenii Vinogradov, A.V.S. Sai Bhargav Kumar, Franco Minucci, Sofie Pollin, Enrico Natalizio	[Project-Page]
SROM : Simple Real-time Odometry and Mapping using LiDAR data for Autonomous Vehicles	IV 2020
Nivedita Rufus, Unni Krishnan R. Nair, A. V. S. Sai Bhargav Kumar , Vashist Madiraju, K. Madhava Krishna	[Project-Page]
PIVO : Probabilistic Inverse Velocity Obstacle for Navigation under Uncertainty	ROMAN 2019
Jyotish, Yash Goel, A. V. S. Sai Bhargav Kumar , K. Madhava Krishna	[Project-Page]
IVO : Inverse Velocity Obstacles for Real Time Navigation	AIR 2019
Jyotish, Yash Goel, A. V. S. Sai Bhargav Kumar , K. Madhava Krishna	[Project-Page]
Cradiant Avers Christian Daniel based Cantral Dasies for Dasative Dlaming Francous results used in	AID 2010
Gradient Aware - Shrinking Domain based Control Design for Reactive Planning Frameworks used in Autonomous Vehicles	AIR 2019
Adarsh Modh, Siddharth Singh, A. V. S. Sai Bhargav Kumar , Sriram N. N., K. Madhava Krishna	[Project-Page]
Motion Planning Framework for Autonomous Vehicles: A Time Scaled Collision Cone Interleaved Model	IV 2019
Predictive Control Approach	

☑ Professional services

2020: Reviewer, IV(IEEE Intelligent Vehicles Symposium).

Program Committee, ROBIO(International Conference on Robotics and Biomimetics) Reviewer, CASE(International Conference on Automation Science and Engineering)

Novel Lane Merging Framework with Probabilistic Risk based Lane Selection using Time Scaled Colli-

A. V. S. Sai Bhargav Kumar, Adarsh Modh, Mithun Babu, Bharath Gopalakrishnan, K. Madhava Krishna

Raghu Ram Theerthala, A.V.S. Sai Bhargav Kumar, Mithun Babu, K. Madhava Krishna

HONORS AND AWARDS

2016-2019	IIIT Hyderabad research fellowship, Awarded a fellowship to cover tuition and living expenses during my
	Masters, Total value (approx.): INR 350000.
2012-2016	Merit Cum Means Scholarship, Awarded a scholarship to cover tuition during my Bachelors, Total value
	(approx.): INR 200000.

[Project-Page]

IV 2018

[Project-Page]

SELF DRIVING CAR - MAHINDRA RISE CHALLENGE

2016 - 2019

- tinyurl.com/selfdriveMRC
- % tinyurl.com/selfdriveMRC2
- > Developed the Motion Planning and Localization pipeline.
- > Implemented and Integrated the Sensor Fusion stack.
- > Developed the cross-sensor calibration package for Camera and LiDAR.
- > Integrated the other pipelines and deployed the code base.
- > Led to publications in IV (Intelligent Vehicle Symposium-18) and AIR (Advances in Robotics-19)

C++ Python ROS PyTorch MATLAB

INVESTIGATION OF NON-PARAMETRIC UNCERTAINTY IN MOTION PLANNING

2019-2020

% tinyurl.com/nonparam

- > Developed efficient algorithm for solving a class of chance-constrained op- optimization by representing the non-parametric uncertainty as functions in Reproducing Kernel Hilbert Space(RKHS).
- > Developed computationally efficient implementation of the proposed idea in C++ and its deployment on Bebop drone to conduct real-time experiments.
- > The efforts for this work got published in RA-L with ICRA 2020.

C++ Python ROS MATLAB

Multi Agent Systems 2017 - 2019

% tinyurl.com/IVOCC

- > Developed both deterministic and stochastic variants of the egocentric version of the famous velocity obstacle(VO).
- > Reformulated the velocity obstacle to adapt to an egocentric framework and deployed the real-time experiments on the Bebop drone.
- > Led to publications in AIR (Advances in Robotics-19) and ROMAN(International Conference on Robot and Human Interactive Communication 2019).

C++ ROS MATLAB

RISK AWARE MERGING 2017 - 2018

% tinyurl.com/RiskAwareMerge

- > Developed a risk-aware merging behavior, for a traffic-like scenario.
- > Developed a framework that has a two-layer structure that ensures generating a collision-free merge maneuvers even in a dense traffic scenarios
- > The efforts for this work got published in IV(Intelligent Vehicle Symposium-18,19).

C++ ROS MATLAB

LOCALISATION AND NAVIGATION IN GPS DENIED ENVIRONMENT.

2016 - 2017

% tinyurl.com/GPSDenied

- > Developed an algorithm that fuses the sensor data from a visual sensor and an IMU to estimate the robot's current location and navigate the robot to its destination with obstacle avoidance in GPS denied environment.
- > The planning stack was implemented using the RRT planner from the MRPT toolkit in Tory Parameter (TP) space, was deployed on Clearpath A200 mobile robot, and tested for its efficacy.

C++ ROS Python